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Advanced Programming Model Constructs Using Tasking

Most shared memory programming in HPC is done with highly synchronous constructs such as the “parallel
for” in OpenMP. With the increasing core counts and non-uniformity in emerging hardware, a more

asynchronous programming model is needed.

The goal of this summer was to explore OpenMP tasks on the Knights Landing (KNL) hardware that will be used
in Cori Phase Il to demonstrate the potential benefits of an asynchronous programming model. This is done
with two kernels, LU decomposition and an iterative Jacob Kernel, as well as a proxy application, CoMD™.
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Performance Overview

The parallel for loop is the default approach to
parallelism in OpenMP. These two charts provide an
overview of tasking performance relative to this, and
how much benefit there is from additional
optimizations, which easily surpass the performance
of worksharing.

For each of these applications, a tasking version without data dependencies was developed to show the

performance cost of moving to tasks. Then a version with task
be gained from removing unnecessary synchronization, and finally several optimizations on the task
dependency version show how much additional performance can be gained.

1 unoptimized tasking version provided by Riyaz Haquw (UCLA) and Bronis deSupinski (LLNL)

Application Kernels

LU decomposition

The initial matrix is divided into a 2D matrix of blocks to
improve cache usage, and enable parallelization. There
are 4 distinct operations divided into 3 phases.

The worksharing (parallel for) version divides these
into 3 phases for each iteration, with a barrier between
each phase.

The tasking version has a similar structure to the
parallel for version, spawning tasks inside of loops and
then synchronizing on taskwait instead of barriers.

The task dependency version removes the
synchronization between phases as well as between
iterations, as lllustrated by diagram 1.

LU has no communication or synchronization between
blocks. The task dependencies simply control access to
the matrix so only one thread at a time is writing to it.

Jacobi Solver

As diagram 2 shows, each element of the matrix
depends on each of its neighbors. As a result,
overwriting an element will change the result of its
neighbor, so a second matrix is typically written to,
and then swapped with the original matrix at the end
of every iteration.

Each version of Jacobi divides up the 2D matrix into
groups of whole rows instead of blocks. This reduces
false sharing and enables very sequential access of
memory.

Similar to LU, the tasking version is similar to the

parallel for version, and the task dependency version
removes the synchronization between iterations.

CoMD

Data in CoMD consists of atoms in 3 dimensional space, where each atom has a position,
velocity, energy, and force. The 3D space is divided into boxes, and each atom is placed
into a box. Each iteration is a timestep where each of the attributes is recalculated for each
atom, and then atom is moved to its corresponding box, if it left its previous box.

The majority of the compute time is spent calculating force between particles, where the
tasking version has one task for calculating forces between atoms in a pair of boxes. The
worksharing and task dependency versions both divide up the work by boxes, calculating

the interactions with all of its neighbors.
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Memory Layout

Proper use of the high bandwidth memory can have
a major impact on performance. This can either done
with the memkind library, or numactl, or by using the
quadcache configuration of the KNL. Changing the
way the matrix is allocated can also improve
performance when operating on blocks of memory,
especially on larger matrix sizes.

OpenMP Task Dependency for LU Decomposition

Blocking Optimizations

When the number of tasks are mapped to the number

of blocks either the size of the block gets larger to
accommodate larger matrix sizes, or the number of :
blocks increases. In order to avoid the overhead of too  *
many tasks, or the loss of locality from oversized H
blocks, tasks must be mapped to multiple blocks, and if
possible multiple iterations over the same blocks.

ions for task
multiple blocks per tasks (block), combining multiple
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Fig 1. Shows the performance of the.
different approaches on KNL

Fig 3. Shows the improvement from
allocating in high bandwidth memory via

numactl
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Figure 6 shows the performance |mprovement of 3 Fig 5. Sh

on the Latest NERSC (Knights Landing) Hardware

Jeremy Kemp?, Alice Koniges?, Yun (Helen) He?, and Barbara Chapman3

ows how much the size of data
(possibly multiple blocks) that each task
operates on varies for different
implementations and matrix sizes.
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Fig 2. Shows the performance of the.
different approaches on Haswell

Fig 4. Shows the performance gained
from allocating the matrix in columns of
blocks i place of a single allocation.

Fig 6. Shows the performance gained
from combining multiple blocks into a
task and the performance gained by
combining multiple blocks and iterations

Diagram 1. Shows the dependencies between blocks in the LU

Jacobi and using OpenMP Tasks to Parallelize Jacobi Code
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Diagram 2. Shows the dependencies between blocks in the Jacobi
Kernel

blocks and iterations per task (block-iter), and a per task.

recursive cache oblivious version (block-rec)that
operates on multiple blocks and iterations.

Applying Optimizations

Jacobi

Jacobi has very little cache reuse, as it only writes a given element once per iteration. As a result, dividing up
the matrix into blocks has no benefit, so the block combination optimizations don’t apply.

Iteration combining is possible, but more complex, due to overlapping read/writes between neighbors. For the
Jacobi iteration optimization, the second matrix is removed, and replaced by 3 threadlocal scratch rows and 4
synchronization rows per chunk of rows. Each task performs an iteration for 3 rows writing the results into the
scratch rows, and then writing the second iteration back to the original matrix.

Whole rows are too large to fit in the L2 of the KNL, so the
cache reuse does not improve. Whereas the Haswell
performance more than doubles due to to the rows fitting
into the very large L3 cache. Further implementation work
is needed on an iteration combining version that operates
on blocks that fit inside of smaller Caches.

Jacobl Optimizations (16384x16394)

CoMD

With CoMD, the initial conversion of the force function to
task dependencies improved performance. The all-task-
dep conversion of the application replaced all parallelism
and synchronization in the application with task
dependencies, including serial regions with data

Fig 7. Shows the performance of the different
versions of Jacobi

Diagram 3. Shows the
division of space into
boxes and the atoms.
involved in a single
calculation

cies. Combining blocks would have been a better i
first optimization, as it would have only reduced overhead ‘ I I
where the full conversion introduced too much overhead

and hurt performance. .
Fig 8. Shows the performance of the different
versions of CoMD

Hardware Conclusions

KNL (From the CARL NERSC KNL testbed) has 64 cores, each with 4
hardware threads. Two cores are grouped in to pairs as a tile and
share 1 MB of L2 cache. There is no L3 cache, but there is 16 GB of
high bandwidth memory that can be configured as cache or

allocated manually in different modes.
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The results on this poster use the quadflat and quadcache
configurations. The cache configuration turns the MCDRAM into
cache that is no longer programmable, while the quadflat
configuration enables the use of memkind or numactl to more
finely control how memory is used.

For comparison, Cori Phase 1 nodes have
2 Haswell processors with a total of 32
cores, 2 hyperthreads per core. Each core
has 256 KB of L2 cache, and each
processor has 40 MB of L3 cache.
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Locality is important, and difficult to do with OpenMP tasks; the consistent poor performance of tasks (without
task dependencies) shows how much overhead is introduced and how much locality is given up. On the other
hand, unoptimized task dependencies demonstrate how much can be gained by removing unnecessary
synchronization. The optimizations on the task dependencies can then improve the locality and achieve much
better performance than the parallel for loops.

There are two major differences when programming for KNL over Haswell; KNL has very little cache per thread
relative to Haswell, and using MCDRAM properly can drastically improve performance. The Jacobi results
illustrate both of these points very well. The fastest version on Haswell performs the worst on KNL due to the
cache size, and the versions that move through memory sequentially perform much better.

Future work includes further applications of the optimizations explored with LU to Jacobi, COMD, and other
applications.
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